Exercise 79

The displacement of a particle on a vibrating string is given by the equation
$s(t)=10+\frac{1}{4} \sin (10 \pi t)$ where s is measured in centimeters and t in seconds. Find the velocity of the particle after t seconds.

Solution

The velocity is the derivative of the displacement function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left[10+\frac{1}{4} \sin (10 \pi t)\right] \\
& =\frac{d}{d t}(10)+\frac{1}{4} \frac{d}{d t}[\sin (10 \pi t)] \\
& =(0)+\frac{1}{4}\left[\cos (10 \pi t) \cdot \frac{d}{d t}(10 \pi t)\right] \\
& =\frac{1}{4}[\cos (10 \pi t) \cdot(10 \pi)] \\
& =\frac{5 \pi}{2} \cos (10 \pi t)
\end{aligned}
$$

Since s is in centimeters and t is in seconds, the velocity has units of centimeters per second.

